
2788

sponding tert-butyl peresters in 1,3,5-triisopropylbenzene at 160° gives 2, [3.2.2]propellane, in 45% yield.¹² The pure hydrocarbon is a mobile liquid, fp 11°; the 100-MHz nmr spectrum of 2 is reproduced in Figure 1b.

The sequence from 7 works well and permits production of substantial amounts of the hydrocarbon 2, yet it does not provide suitable intermediates for attempts at the preparation of the elusive [2.2.2]propellane system via another ring contraction.¹³ Our second approach to [3.2.2]propellanes is without this subtle deficiency. Formylation of the [4.2.2]propellane 6 and subsequent reaction of the α -hydroxymethylene ketone with tosyl azide and diethylamine yields the α -diazo ketone 11. Irradiation of 11 in aqueous dioxane gives (63%) the [3.2.2]propellane acid 12, mp 79°. We have converted 12 to the ketone 13 [ir (CCl₄) ν 5.77 μ] and are trying now to bring about contraction of 13 to a [2.2.2]propellane.

The [4.2.2]- and [3.2.2]propellane hydrocarbons are thermally stable to at least 160°. Neither reacts at a significant rate with hydrogen at atmospheric pressure over Adams catalyst. On the other hand, [4.2.2]- and [3.2.2]propellane react quantitatively with bromine¹⁴ to give the tertiary dibromides 14, mp 44-45°, and 15, mp 143-143.5°, respectively, rare and useful examples of a bicyclo[4.2.2]decane and a bicyclo[3.2.2]nonane substituted at the bridgeheads.

(11) P. D. Bartlett and R. R. Hiatt, J. Amer. Chem. Soc., 80, 1398 (1958). See ref 8b and P. E. Eaton and T. W. Cole, Jr. (*ibid.*, 86, 3157 (1964)) for examples of applications of this method.

(12) [3.2.2]Propell-6-ene is a minor product (ca. 5%).

(13) We have examined also a number of routes proceeding from relatives of 7 carrying functional groups on both five-membered rings, for example, from [3.3.2]propella-2,6-dione produced (cf. ref 3f) by way of photoaddition of ethylene to simple derivatives of bicyclo[3.3.0]oct-1(5)-ene-2,6-dione whose preparation will be described elsewhere. То date, these paths have offered no special advantages.

(14) The reactions were carried out at room temperature in carbon tetrachloride initially 1 M in each reactant and were complete in 10-20 min.

Journal of the American Chemical Society | 93:11 | June 2, 1971

The propellane ketone 6 and the corresponding alcohol, mp 117.5-118.5°, are thermally stable, but both react very rapidly with acid.¹⁵ We shall discuss these reactions in future reports along with the thermochemical and X-ray data now being gathered for the [4.2.2]and [3.2.2]propellane systems.

Acknowledgments. Support of this work by the National Science Foundation and by the Institute for General Medical Sciences of the National Institutes of Health is recognized with gratitude. Badische Anilinund-Soda-Fabrik AG was kind enough to provide generous gifts of bicyclo[3.3.0]oct-1(5)-en-2-one. We thank Mr. G. H. Temme for his help.

(15) An early, verbal report^{1b} that halogen acids add across the central bond of 6 is in error; unfortunately, this interpretation has been quoted in the literature [W. F. Erman and T. W. Gibson, *Tetrahedron*, 25, 2493 (1969)].

(16) Witco Chemical Co. Fellow, 1967-1968; American Chemical Society-Petroleum Research Fund Graduate Fellow, 1968-1969; National Institutes of Health Predoctoral Fellow, 1969-1970.

> Philip E. Eaton,* Kayson Nyi¹⁶ Searle Chemistry Laboratory, Department of Chemistry The University of Chicago, Chicago, Illinois 60637 Received December 19. 1970

Discovery and Electron Spin Resonance Spectra of Matrix-Stabilized Hydronium Radicals H₃O and D₃O¹

Sir:

Bernstein² was the first to publish on the possible existence of H atom adducts such as H₈O and NH₄. By estimations based on thermodynamic cycles and vibrational frequencies, he predicted the bond dissociation energies for such species in the gas phase to range from 7 to 33 kcal/mol. If so, H₃O would be stable relative to $H + H_2O$ and should be observable. Further interest in the significance of H₃O was stimulated by Magee,³ who proposed it as an intermediate in the radiolysis of water. Sworski⁴ extended this view to argue that H₃O was the probable precursor of molecular hydrogen in water radiolysis. About this time, Martin⁵ began to search for H₃O and NH₄ using a special palladium catalyst and mass spectrometer apparatus. He was encouraged in this effort by Soldano^{6a} and Lossing.^{6b} These experiments failed because the emission of spontaneous positive ions from the catalyst when exposed to either ammonia or water precluded using an electron beam of variable energy to detect transient free radicals. However, after witnessing

(1) This work was made possible by the U.S. Atomic Energy Commission under Contract No. AT-(40-1)-2825 and by Vanderbilt University. The esr apparatus used was purchased through Vanderbilt's Centers of Excellence Award sponsored by the National Science Foundation. We also thank Professor R. E. Rummel for adapting the photochemical apparatus for esr work and for drawing our figures. Parts of this study were first reported at the Ninth Informal Conference on Photochemistry, The Ohio State University, Columbus, Ohio, Sept 1-4 1970 and at the International Symposium on Atomic, Molecular and Solid-State Theory and Quantum Biology, University of Florida, Sanibel Island, Fla, Jan 18-23, 1971. (2) H. J. Bernstein, J. Amer. Chem. Soc., 85, 484 (1963).

(2) H. J. Beinstein, J. Amer. Chem. Soc., 80, 304 (1903).
(3) J. L. Magee, Radiat. Res. Suppl., 4, 20 (1964).
(4) T. J. Sworski, J. Amer. Chem. Soc., 86, 5034 (1964).
(5) T. W. Martin, J. Chem. Phys., 43, 1422 (1965).
(6) (a) Dr. B. A. Soldano of the Oak Ridge National Laboratory predicted the existence and possible theoretical significance of the hydronium radical in private conversations with Martin during the summer of 1958. (b) Dr. F. P. Lossing of the National Research Council of Canada brought Bernstein's paper to his attention and independently suggested the catalyst experiments.

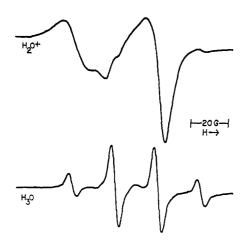


Figure 1 Esr spectra of H₂O⁺ and H₃O at -180.°

these experiments, Melton later published several papers claiming mass spectrometric evidence for H₃O, D₃O, and HD₂O.^{7,8} Unfortunately, mass spectrometry is an indirect and questionable method at best to prove the existence of H₃O because the neutral species must first be transformed to H_3O^+ to be detected and because unexplained and significant background peaks are often present which reduces one's confidence in the interpretations of the data. Furthermore, the experimental conditions are too severe and remote and the yields too low for useful chemistry.

In contrast, we publish here the first direct and unequivocal evidence for the hydronium radical. It was discovered after uv irradiation of 0.01 M aqueous ceric perchlorate-perchloric acid solutions frozen to form a glassy matrix at -180° in the cavity of an esr apparatus using light from 2800 to 3500 Å. Our equipment is described elsewhere.⁹ In accord with the earlier work of Moorthy and Weiss,¹⁰ we first observed the doublet esr spectrum of H_2O^+ (see Figure 1), which is formed by the photochemical reaction, $Ce^{IV}H_2O + h\nu \rightarrow$ $Ce(III) + H_2O^+$. However, on annealing the matrix in the dark to -120° and recooling to -180° , the H_2O^+ spectrum disappears and is replaced by the H_3O quartet (see Figure 1). The H₃O spectrum is characteristic of a species that has axial symmetry with three equivalent hydrogens. Similar quartets could arise from such species as BH₃-, CH₃, or NH₃+, and special precautions and tests were made to eliminate them from consideration. The oxychloro radicals CIO, CIO₂, CIO₃, and CIO₄ could also give four-line spectra because Cl has a nuclear spin of 3/2, but their line intensities should all be equal and not close to 1:3:3:1 as found for H₃O.

The most compelling evidence for assigning our quartet to H₃O came from successive spiking experiments with nitrate ion and acetic acid. These experiments show that we are not generating CH3 radicals from some carbonaceous impurity which is resistant to our extensive purification procedures and provide an easy chemical way of distinguishing between H₃O and CH_3 radicals. They also allow us to make a detailed physical comparison of the esr spectra of these

Figure 2. Composite (see text) esr spectra at -180° in 99.8% D heavy water solvent; \bar{g} values are referenced to diphenylpicrylhydrazyl (DPPH). Lines A = H₃O ($a_{\rm H}$ = 22.84 G, \bar{g} = 2.0035 ± 0.0003); lines B = D₃O (a_D = 3.65 G, \bar{g} = 2.0035 ± 0.0003); lines C = D atom (a_D = 77.3 G, \bar{g} = 2.0022 ± 0.0004); lines D = H atom ($a_{\rm H} = 504.3$ G, $\bar{g} = 2.0020 \pm 0.0004$); and lines X = probably a triplet belonging to the H₂DO spectrum.

two very similar but not identical radicals. By adding 0.04–0.06 M NaNO₃ to an original solution containing about 0.01 M cerium(IV) perchlorate and 6-7.5 M perchloric acid in 80-85% D heavy water solvent, it is possible to inhibit the simultaneous formation of H₃O and H atoms normally recorded after 4 min of direct photolysis without annealing at -180° . Once the H₃O and H atom producing process is "turned off" by nitrate, the further addition of 0.04-0.06 M acetic acid and subsequent photolysis produces no H atoms but does yield an authentic CH₃ spectrum for comparison with the original H₃O quartet. Although we find the proton hyperfine splittings of H₃O and CH₃ to be remarkably close (within 1%), we do observe significant and reproducible differences in their band shapes and band widths with $\Delta H_{pp}(CH_3) > \Delta H_{pp}$ (H₃O) by 10-15%. These experiments clearly suggest that H₃O is formed from water molecules closely coupled to the Ce(IV) solvation shell

Further proof that we are observing hydronium radicals came from isotopic studies in 99.8% D heavy water. The analog D₃O should give a seven-line spectrum with relative intensities 1:3:6:7:6:3:1 having hyperfine splittings, a_D , reduced by a factor of 6.51 equal to the ratio of magnetic dipole moments $\mu_{\rm H}/\mu_{\rm D}$. Hence, the D_3O lines should be split by about 3.52 G when compared to $a_{\rm H}({\rm H}_3{\rm O}) = 22.84$ G. These predictions are largely realized in Figure 2, where the three central D_3O lines (labeled B) have an intensity ratio of 6:7:6 with $a_D = 3.65$ G. The outer D₃O lines are masked by the H₃O quartet (labeled A). Additional proof for H_3O and D_3O comes from finding definite lines for H and D atoms in Figure 2. These atoms probably arise from the decomposition reactions $H_3O \rightleftharpoons H + H_2O$ and $D_3O \rightleftharpoons D + D_2O$. The heavy water studies are unusual in that H₃O, D₃O, H, and D are all observed on direct irradiation at -180° without annealing the matrix. On annealing in the dark to -120° and recooling to -180° the H and D atoms completely disappear, while the H_3O and D_3O lines increase in intensity. Figure 2 is a composite showing the maximum yields of each spectrum, and the relative intensities suggest that H_3O is stable relative to $H + H_2O$. This would be in accord with Bernstein's original prediction were this in gas phase rather than a matrix-

⁽⁷⁾ C. E. Melton and P. S. Rudolph, J. Catal., 5, 387 (1966).
(8) C. E. Melton and H. W. Joy, J. Chem. Phys., 46, 4275 (1967).
(9) T. W. Martin, L. L. Swift, and J. H. Venable, Jr., *ibid.*, 52, 2138 (1970).

⁽¹⁰⁾ P. N. Moorthy and J. J. Weiss, ibid., 42, 3127 (1965).

stabilized system. Hence, we believe the H_3O bond dissociation energy is probably less than Bernstein's lower limit of 7 kcal/mol.

Our assignment of neutral H₃O rather than $(H_3O)^{2+}$ is based on the following arguments. (1) We would predict $a_{\rm H}(H_3O)^{2+}$ to be much greater than the 22.84 G observed because, in general, cation radicals display larger splittings than their corresponding anions. For example, $a_{\rm H}(\text{anthracene})^+ > a_{\rm H}(\text{anthracene})^{-.11}$ This effect is also demonstrated by the isoelectronic series BH₃⁻, CH₃, NH₃⁺ shown in Table I to which

Table I. Summary of Radicals with Three Equivalent Hydrogens

Radical	$a_{\rm H}$ or $a_{\rm D}$, G	ģ	Ref
BH3-	16.5	2.0013	a
CH ₃	23.04	2.00255	Ь
NH_{3}^{+}	25.9	2.0035 ± 0.0003	с
	25.0	2.0034 ± 0.0001	d
H₃O	22.84	2.0035 ± 0.0003	е
D_3O	3.65	2.0035 ± 0.0003	е

^a M. C. R. Symons and H. W. Wardale, *Chem. Commun.*, 758 (1967). See also E. D. Sprague and F. Williams, *Mol. Phys.*, 20, 375 (1971), for interesting temperature effects on \bar{g} and $a_{\rm H}$. ^b R. W. Fessenden and R. H. Schuler, *J. Chem. Phys.*, 39, 2147 (1963). ^c T. Cole, *ibid.*, 35, 1169 (1961). ^d J. S. Hyde and E. S. Freeman, *J. Phys. Chem.*, 65, 1636 (1961). ^e This work, with \bar{g} values referenced to diphenylpicrylhydrazyl (DPPH).

 $(H_3O)^{2+}$ would belong. (2) We would expect $(H_3O)^{2+}$ to be a strong oxidizing agent and H₈O a good reducing agent. Hence, the presence of H atoms is more easily correlated with H₃O. (3) We would expect $(H_3O)^{2+}$ to undergo isotopic exchange readily because of its repulsive double charge. However, we observe no enhancement of deuterated species upon continuous irradiation or annealing of the radicals in heavy water. It is remarkable that the esr and exchange properties of H₃O and CH₃ are so similar. If CH₃ is assumed to be planar as claimed,¹² this raises the question of whether H₃O is planar or tetrahedral or partially complexed to another species such as Ce(III).¹³ (4) Lastly, we are able to produce $H_{3}O$ in good yield in basic media, an environment surely more hostile to $(H_3O)^{2+}$ than H_3O .

In conclusion, we have clearly demonstrated that matrix-stabilized hydronium radicals do exist, and we believe they may become as useful as H atoms and hydrated electrons in understanding water chemistry.

(11) J. P. Colpa and J. R. Bolton, Mol. Phys., 6, 273 (1963).

(12) T. Cole, H. O. Pritchard, N. R. Davidson, and H. M. McConnell,

ibid., 1, 406 (1958). (13) Experiments with ¹⁷O water may help resolve these structural questions,

> T. W. Martin,* L. L. Swift Department of Chemistry, Vanderbilt University Nashville, Tennessee 37203 Received February 26, 1971

Hyperfine Interaction of Halide Ions with Metalloporphyrin Cation Radicals

Sir:

Numerous electron spin resonance studies have revealed interactions of diamagnetic cations with aromatic anion radicals.¹ We present here evidence of

Journal of the American Chemical Society | 93:11 | June 2, 1971

hyperfine interaction between halogen anions and the cation radical of a metalloporphyrin.

Oxidation of zinc tetraphenylporphyrin (ZnTPP) by controlled-potential electrolysis in CH_2Cl_2 , with $(C_3H_7)_4NClO_4$ as carrier electrolyte, results in a stable π -cation radical, ZnTPP·+ClO₄⁻. This radical is characterized²⁻⁴ by its absorption spectrum and an esr spectrum of nine lines assigned to the four equivalent nitrogens.

Chemical oxidation of ZnTPP in CH_2Cl_2 or $CHCl_3$ with 0.5 mol of Br_2 is reversible² and produces a radical with the same absorption spectrum as ZnTPP·+ClO₄⁻. The esr signal associated with the radical is not, however, the characteristic nine-line spectrum, but consists, instead, of the four lines shown in Figure 1. Similar spectra are obtained if $Co^{111}OEP \cdot {}^{2+}2Br^{-}$, the cation radical of cobaltic octaethylporphyrin,³ is used as the oxidizing agent. Treatment of the bromine oxidation product with $AgClO_4$ causes AgBr to precipitate and regenerates the ZnTPP·+ClO₄⁻ esr spectrum with no change in the absorption spectrum. The number of spins, determined by integration of the esr signals, is conserved within 10%. These facts are consistent with the following equation.

$$ZnTPP \xrightarrow{0.5Br_2} ZnTPP \cdot +Br \xrightarrow{AgClO_4} ZnTPP +ClO_4 + AgBr \downarrow$$

The four-line spectrum is thus assigned to hyperfine interaction of the ZnTPP·+ radical with one bromide ion (nuclear spin, $I = \frac{3}{2}$). The experimental spectrum can be simulated assuming the splitting constants of Table I.

Table I. $ZnTPP \cdot +X - in CHCl_3$

X-	ax, Gª	a _N , G ^a	g value	
⁷⁹ Br	8.18 ^b			
⁸¹ Br	8.82	1.60°	$2.0059(\pm 0.0003)$	
³⁵ Cl	1.66 ^b			
³⁷ Cl	1.38	1.62	$2.0032 (\pm 0.0001)$	
F	8.78	1.61	$2.0027(\pm 0.0001)$	
ClO ₄		1.46	$2.0025(\pm 0.0001)$	

^a Obtained from the computer simulations. ^b Determined by the magnetic properties of the isotopes. ^c From d_{20} -ZnTPP.⁺Br⁻ (deuterated phenyl groups), where the nitrogens are partially resolved.

Oxidation of ZnTPP in CH₂Cl₂ or CHCl₃ by 0.5 mol of Cl₂, controlled-potential electrolysis with $(C_2H_5)_4$ -NCl as supporting electrolyte, or treatment of ZnTPP·+-ClO₄⁻ with excess $(C_2H_5)_4$ NCl all yield a radical with the 12-line esr spectrum shown in Figure 2, but the absorption spectrum remains that of ZnTPP·+ClO₄⁻. If the solvent, CH₂Cl₂ or CHCl₃, is pumped off and replaced by the more polar methanol, the optical spectrum does not change, while the esr spectrum shows the same nine lines as does that of ZnTPP +ClO₄⁻. The 12-line spectrum is satisfactorily simulated assuming hyperfine interaction of ZnTPP + with one chloride ion ($I = \frac{3}{2}$). As previously reported² for

(1) M. C. R. Symons, J. Phys. Chem., 71, 172 (1967), and references therein.

⁽²⁾ J. Fajer, D. C. Borg, A. Forman, D. Dolphin, and R. H. Felton, J. Amer. Chem. Soc., 92, 3451 (1970).
(3) R. H. Felton, D. Dolphin, D. C. Borg, and J. Fajer, *ibid.*, 91, (3)

⁽³⁾ R. H. Felton, D. Dolphin, D. C. Borg, and J. Fajer, *blu2.*, 91, 196 (1969).
(4) A. Wolberg and J. Manassen, *ibid.*, 92, 2982 (1970).